Centre for High Energy Physics Faculty of Science University of the Punjab, Lahore Course Outline

Program	BSCP	Course Code	CPHY 315	Credit Hours	3				
Course Title Classical Mechanics									
Course Introduction									
This course introduces classical mechanics concepts. Historically, a set of core concepts — space, time, mass, force, momentum, torque, and angular momentum — were introduced in classical mechanics in order to solve the most famous physics problem, the motion of the planets.									
Learning Outcomes									
 The course introduces Classical Mechanics at undergraduate level. Its objectives are as following. 1. Solve advance problems of mechanics. 2. Learn different formalism of classical mechanics. 3. Learn basic principles of non-linear dynamics. 									
Course Content									
Week 1	Review of Newtonian mechanics of a system of particles								
Week 2	The Independent Coordinates of a Rigid Body								
Week 3	The Euler angles, Rate of Change of a Vector, Rotational Kinetic Energy and Angular Momentum								
Week 4	The Inertia Tensor, Euler's Equations of Motion, Motion of a Torque-free Symmetrical Top								
Week 5	The Motion of a Heavy Symmetrical Top with One Point Fixed. Lagrange Formalism: Constraints								
Week 6	Generalized coordinate								
Week 7	D'Alembert Principle and Derivation of Lagrange equations								
Week 8	Lagrange equations for nonholonomic constraints and Lagrange								
Week 9	Central Force Problem								
Week 10	Two body problem and its reduction to one body problem, equation of motion solution of one body problem, Planetary motion and derivation of Kepler's laws								
Week 11	Rutherford scattering formula. Hamilton's Formalism: Legendre transformation and Hamilton's equations of motion; Calculus of variation and Hamilton's principle								

Week 12	Derivation of Lagrange's equation from Hamilton's principle; Phase space and			
	Liouville's theorem			
Week 13	Solution of some elementary problems by Hamilton's Formalism			
Week 14	The canonical transformation			
Week 15	Poisson bracket. Hamilton-Jacobi theory			
	Coloring of Herritan Local: DE for a second allower to react and			

Week 16Solution of Hamilton-Jacobi DE for some elementary systems

Textbooks and Reading Material

- 1. Classical Mechanics (2ndedition), T. L. Chow, John Wiley (1995).
- 2. Classical Mechanics (2ndedition), Greiner, *Springer* (2003).
- 3. Classical Mechanics Simulations, Bruce Hawkins and Randall Jones, *John Wiley & Sons* (1995).
- 4. Classical Mechanics (3rdedition), H. Goldstein, Addison-Wesley (1950).
- 5. Classical Mechanics, V.D. Barger and M. G. Olsson, McGraw-Hill, (1995).
- 6. Classical Mechanics (2ndedition), Atam and P. Arya, *Prentice Hall Int. Inc.* (1998).

Teaching Learning Strategies

The instructor is required to make use of examples of the text books and The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.

Assignments: Types and Number with Calendar

At least two assignments and two quizzes. A course project may also be assigned.

Assessment							
Sr. No.	Elements	Weightage	Details				
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.				
2.	Formative Assessment	25%	Continuous assessment includes Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.				
3.	Final Assessment	40%	Written Examination at the end of the semester. At least fifty percent of the question paper would involve new problems related to the concepts learned in the course. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.				